Дендро Бот 3.0

ИНЖЕНЕРНАЯ КНИГА

Название проекта: "ДендроБот", версия 3.0

Начало работы над проектом: май 2023 г.

ОГЛАВЛЕНИЕ

Команда инженеров-разработчиков	4
Назначение комплекса	5
Общая информация	5
Цель проекта	5
Актуальность выбранного направления работы	5
Задачи проекта	6
Результаты работы	6
Стадии разработки проекта	8
Этапы работы над проектом	14
Состав комплекса и платформа	15
Функциональные схемы	16
Функциональная схема робота, сажающего деревья	16
Функциональная схема робота, поливающего деревья	17
Описание конструкций	18
Характеристики и компоненты робота, сажающего деревья	18
Характеристики и компоненты робота, поливающего деревья	21
Программное обеспечение комплекса	24
Модели элементов, созданных с помощью 3D-печати	28

КОМАНДА ИНЖЕНЕРОВ-РАЗРАБОТЧИКОВ

Еманов Георгий, 10 лет, ученик 4 класса. Мои хобби - робототехника и 3D моделирование.

Чех Илья, 10 лет, ученик 4 класса. Мои хобби - робототехника и английский язык.

Чех Анна, 8 лет, ученица 2 класса. Мои хобби - робототехника и рисование. Большую часть своего времени наша команда проводит в ЦМИТе, разрабатывая и совершенствуя различных роботов.

РАСПРЕДЕЛЕНИЕ НАГРУЗКИ НА ЧЛЕНОВ КОМАНДЫ:

- Дизайн роботов, идея проекта все участники команды
- Оформление инженерной книги Георгий и Илья
- 3D моделирование и печать Георгий
- Сборка роботов (часть EV3) *Георгий и Илья*
- Сборка робота (часть WeDo 2.0) Анна
- Программирование EV3 Георгий и Илья
- Программирование WeDo 2.0 *Анна*
- Оформление проекта с использованием творческих элементов ручной работы Анна

НАЗНАЧЕНИЕ КОМПЛЕКСА

ОБЩАЯ ИНФОРМАЦИЯ

Наш проект "ДендроБот" представляет собой систему для автоматизации процесса посадки деревьев C использованием комплекса специализированных роботов. "ДендроБот" состоит из двух основных роботов: один копает борозду и сажает деревья, а второй отвечает за поливку посаженных деревьев. Система управляется контроллерами LEGO EV3 и WeDo 2.0 и оснащена необходимыми датчиками и механизмами для определения заданных мест посадки и обеспечения заботы о посаженных растениях. Проект "ДендроБот" направлен на улучшение экологической ситуации внедрение эффективных методов ухода за лесными насаждениями, делая процесс посадки деревьев более систематизированным, эффективным и устойчивым.

ЦЕЛЬ ПРОЕКТА

Разработать и реализовать взаимодействующий комплекс роботов для посадки деревьев по заданному маршруту с фиксированным интервалом, способных самостоятельно определять места посадки, готовить посадочные борозды и автоматически подавать в них саженцы, а также поливать саженцы.

АКТУАЛЬНОСТЬ ВЫБРАННОГО НАПРАВЛЕНИЯ РАБОТЫ

Проект "Дендробот" призван решить проблему сокращения лесных массивов и увеличить количество растущих деревьев. Деревья играют важную роль в сохранении экосистем, водных ресурсов и биоразнообразия. Они также помогают бороться с изменением климата, улучшая качество воздуха и сохраняя плодородие почвы.

Автоматизация процесса посадки деревьев с помощью комплекса "ДендроБот" делает решение этой задачи более эффективным и доступным.

Роботы способны быстро и точно сажать саженцы деревьев, обеспечивая оптимальные условия для их роста и развития. Это позволяет увеличить скорость восстановления лесов и укрепить зеленые зоны в городах.

Проект "ДендроБот" имеет потенциал не только смягчить последствия вырубки лесов, но и вдохновить новое поколение на заботу о природе. За счет автоматизации и упрощения процесса посадки деревьев, "ДендроБот" делает участие в экологических инициативах доступным и привлекательным для широкой аудитории, в том числе и для молодежи.

ЗАДАЧИ ПРОЕКТА

- 1. Изучить, какие методы существуют для посадки деревьев и какие проблемы с этим возникают.
- 2. Придумать способы улучшения ранее созданных роботов, чтобы они могли эффективнее сажать деревья.
- 3. Создать и протестировать новые модели роботов, которые будут использовать передовые технологии для более точной и быстрой посадки деревьев.

РЕЗУЛЬТАТЫ РАБОТЫ

- 1. Сконструированы улучшенные модели роботов, способные эффективно и точно сажать саженцы деревьев.
- 2. Реализована система автоматизации, которая позволяет роботам самостоятельно перемещаться к местам посадки и выполнять задачи без необходимости постоянного контроля человека.
- 3. Созданы простые и интуитивно понятные интерфейсы для управления роботами, что делает процесс посадки деревьев доступным и легким для использования даже без специальных знаний.
- 4. Создан прототип системы посадки деревьев с использованием комплекса "ДендроБот", что подтвердило их эффективность и применимость на практике.

Результаты проекта "ДендроБот" представляют собой автоматизированную систему для посадки деревьев. Одним из ключевых достижений является разработка специализированных роботов, которые могут самостоятельно перемещаться к местам посадки и проводить операции по высадке саженцев позволяет существенно Это увеличить эффективность процесса, освобождая человеческий труд для других задач и необходимое время, ДЛЯ выполнения работ. заложенным в проекте усовершенствованиям, "ДендроБот" становится не только эффективным инструментом для посадки деревьев, но и важным шагом в направлении устойчивого развития и сохранения природы.

Робот, ответственный за поливку саженцев, является неотъемлемой частью проекта "ДендроБот". Он следует за основным роботом, который занимается посадкой деревьев, и автоматически активируется после завершения процесса посадки. Этот робот оснащен эффективным механизмом полива, осуществляемым точечно и целенаправленно, чтобы минимизировать расход воды и максимизировать поглощение влаги корнями саженцев. Таким образом, робот для полива саженцев обеспечивает оптимальные условия для роста и развития посаженных деревьев, делая процесс ухода за ними более эффективным и продуктивным.

Прототипом нашей платформы стал робот "ДендроБот", представленный на Открытом межрегиональном чемпионате по робототехнике «Сурские Инженеры», который прошел в Пензе в мае 2023 года. Идея модернизации возникла у команды с учетом новых знаний и навыков, полученных за предыдущий учебный год. Ниже будут представлены элементы платформы, в таблицах указаны отличительные особенности предлагаемого проекта, в сравнении с прототипом.

СТАДИИ РАЗРАБОТКИ ПРОЕКТА

Рисунок 1: Первая версия ДендроБота на базе LEGO WeDo 2.0



Рисунок 2: Добавление возможностей LEGO EV3

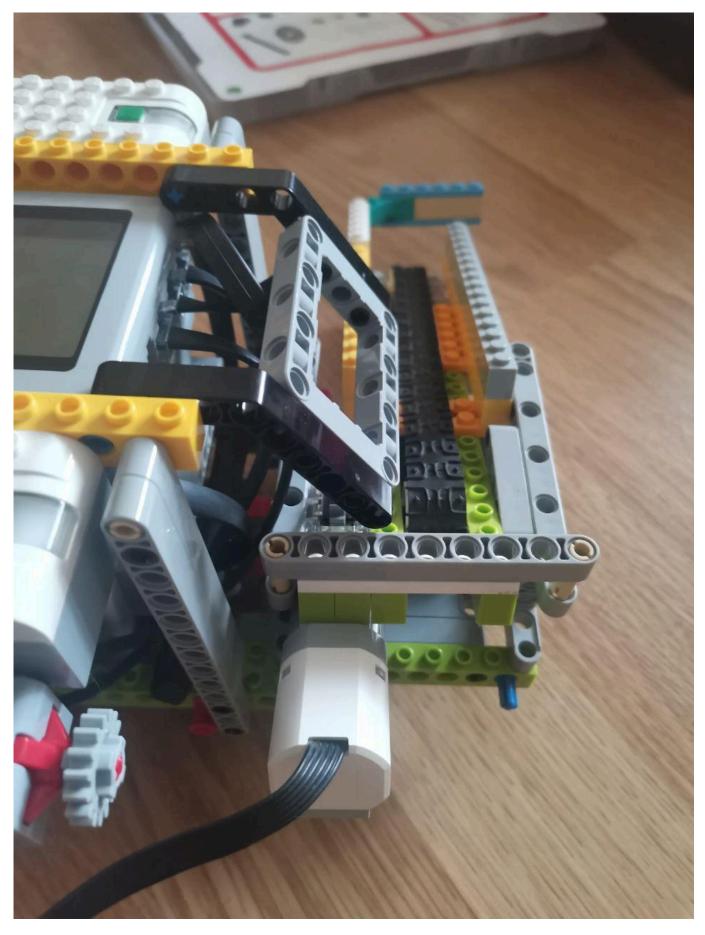


Рисунок 3: Модернизация транспортера саженцев

Рисунок 4: Создание робота для полива саженцев

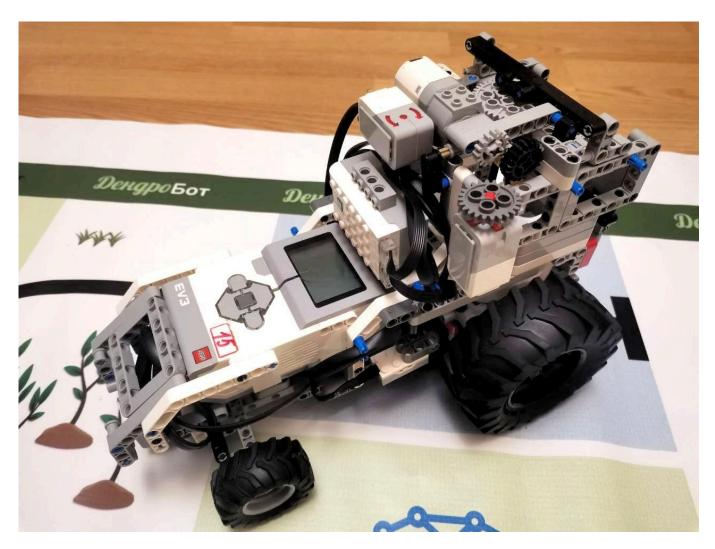


Рисунок 5: Переработка шасси робота для работы на реальном грунте

Рисунок 6: Замена бура на металлический плуг

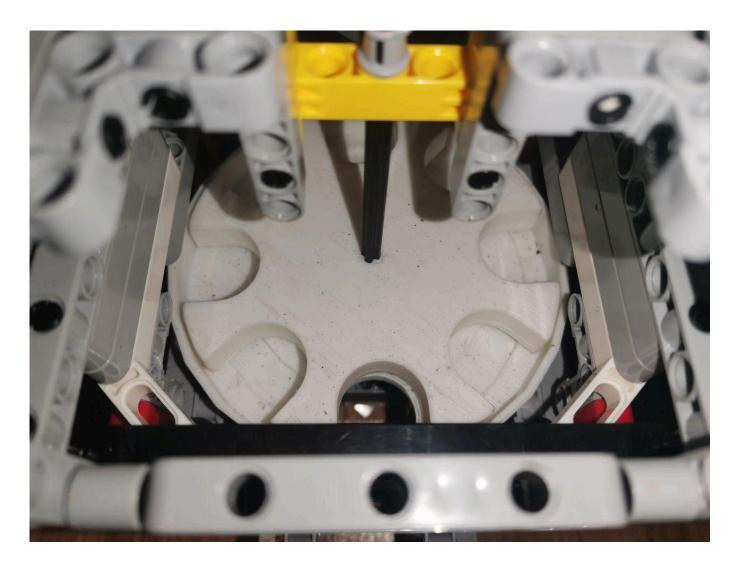


Рисунок 7: Замена транспортерной ленты на барабанный механизм подачи саженцев

Рисунок 8: Добавление раздвигающихся поливочных рукавов и шлангов к поливальной машине

Рисунок 9: Финальное состояние роботов проекта версии 3.0

ЭТАПЫ РАБОТЫ НАД ПРОЕКТОМ

ДАТА	ЗАДАЧА	РАБОТА
Май 2023	Обсуждение идеи проекта. Планирование сроков выполнения этапов.	Мозговой штурм: - дизайн бура и транспортера саженцев - дизайн сажающего робота
Июнь-декабрь 2023	Обсуждение идеи проекта. Планирование сроков выполнения этапов.	Мозговой штурм: - редизайн сажающего робота - дизайн поливающего робота Моделирование обновлений на прототипах.
Январь 2024	Коррекция задач проекта и сроков реализации. Дизайн рабочего поля.	Сборка сажающего робота. Печать первой версии рабочего поля.
Февраль 2024	Реализация взаимодействия разных конструкторов LEGO.	Сборка поливающего робота. Доукомплектование роботов требуемыми датчиками. Программирование роботов.
Март 2024	Оценка функции проекта. Корректировка дизайна рабочего поля.	Тестовые запуски всех элементов проекта. Корректировка программ. Печать новой версии рабочего поля.
Апрель 2024	Презентация проекта, инженерной книги, дизайна.	Демонстрация работы проекта. Консультации с руководителем. Устранение замечаний. Печать 3D-элементов.
Июнь-август 2024	Доработка роботов	Переделка шасси робота. Разработка нового механизма подачи саженцев. Изготовление и монтаж плуга. Печать 3D-элементов. Доработка программы робота для движения по гироскопу.
Сентябрь 2024	Финальная доводка проекта	Печать новой версии рабочего поля. Демонстрация работы проекта руководителю. Устранение замечаний.

СОСТАВ КОМПЛЕКСА

- 1. Робот, копающий борозду и сажающий деревья
- 2. Робот, поливающий деревья

ПЛАТФОРМА

Аппаратная платформа:

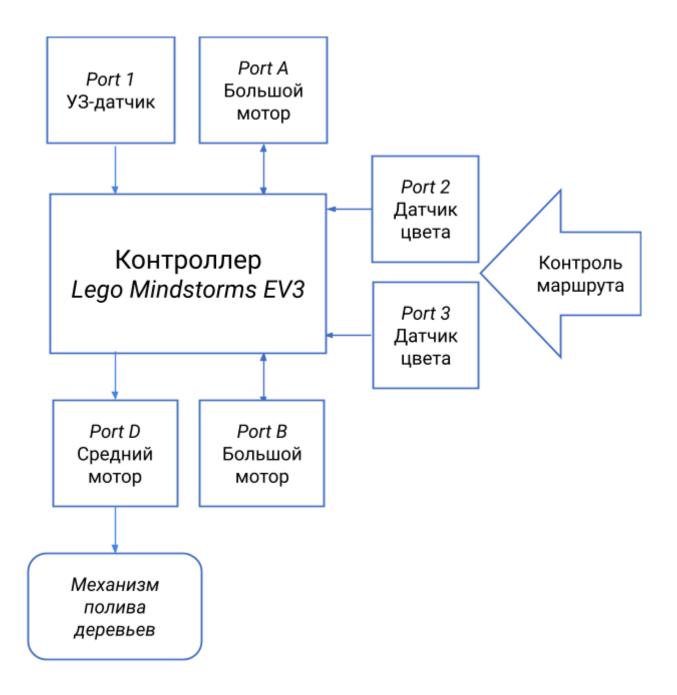
- Контроллер Lego Mindstorms EV3 2 шт.
- Смарт-хаб Lego Education WeDo 2.0 1 шт.

Используемые датчики:

- Датчик цвета EV3 3 шт.
- Гироскоп EV3 1 шт.
- У3-датчик EV3 1 шт.
- Датчик наклона WeDo 2.0 1 шт.


Моторы:

- Большой мотор EV3 2 шт.
- Средний мотор EV3 4 шт.
- Двигатель WeDo 2.0 1 шт.


Использование 3D-печати: да (посадочный барабан, макеты деревьев). Использование дополнительных материалов: сталь, термопластик, глина, краска

ФУНКЦИОНАЛЬНЫЕ СХЕМЫ

ФУНКЦИОНАЛЬНАЯ СХЕМА РОБОТА, САЖАЮЩЕГО ДЕРЕВЬЯ

ФУНКЦИОНАЛЬНАЯ СХЕМА РОБОТА, ПОЛИВАЮЩЕГО ДЕРЕВЬЯ

ОПИСАНИЕ КОНСТРУКЦИЙ

ХАРАКТЕРИСТИКИ И КОМПОНЕНТЫ РОБОТА, САЖАЮЩЕГО ДЕРЕВЬЯ

Nº	ЭЛЕМЕНТ	НАЗНАЧЕНИЕ	v 1.0	v 2.0	v 3.0
1	Большие двигатели EV3	Перемещение робота по любой траектории	-	2 шт	-
2	Контроллер EV3	Обеспечение работы робота	-	1 шт	1 шт
3	Средний мотор EV3	Управление режимами работы: бурение лунки / посадка дерева; перемещение робота; управление на маршруте	-	1 шт	3 шт
4	Датчики наклона WeDo	Передача команды на бур и посадочный механизм	-	2 шт	1 шт
5	Смарт-хаб WeDo	Управление двигателями бура и посадочного механизма	2 шт	2 шт	1 шт
6	Двигатели WeDo	Вращение бура и посадочного механизма	3 шт	2 шт	1 шт
7	Датчики цвета EV3	Контроль траектории движения и мест остановки	-	2 шт	1 шт
8	Гироскоп EV3	Контроль направления движения	-	-	1 шт

Функции робота, сажающего деревья:

- Движется по заданному маршруту
- Определяет места посадки саженцев
- Опускает и поднимает плуг
- Управляет посадочным барабаном с саженцами

Рисунок 10: Робот для посадки деревьев (вид сверху)

Рисунок 11: Робот для посадки деревьев (вид сбоку)

ХАРАКТЕРИСТИКИ И КОМПОНЕНТЫ РОБОТА, ПОЛИВАЮЩЕГО ДЕРЕВЬЯ

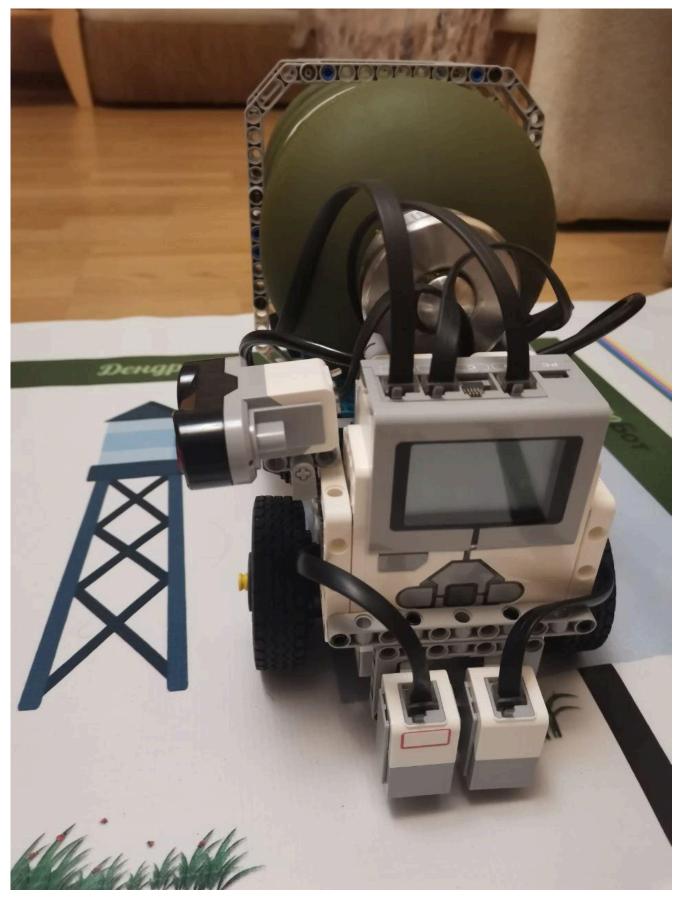
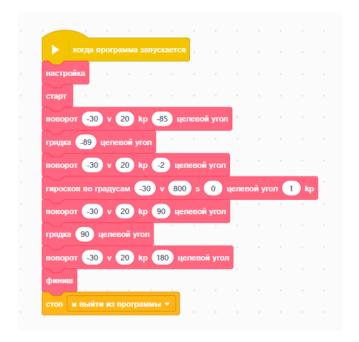
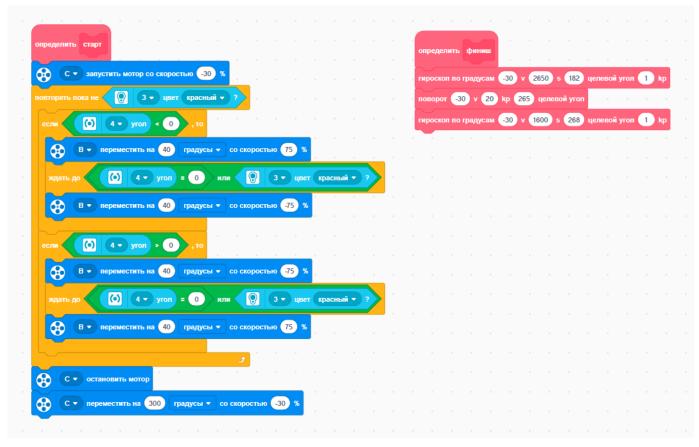
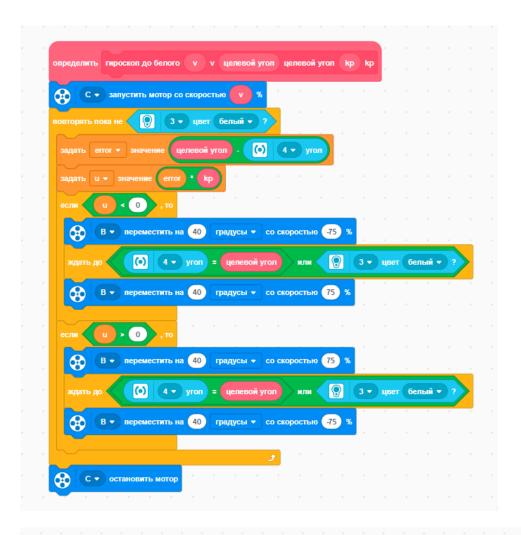
Робот, разработанный для полива деревьев, впервые представлен в нашем текущем проекте, исходный прототип не предусматривал операции полива.

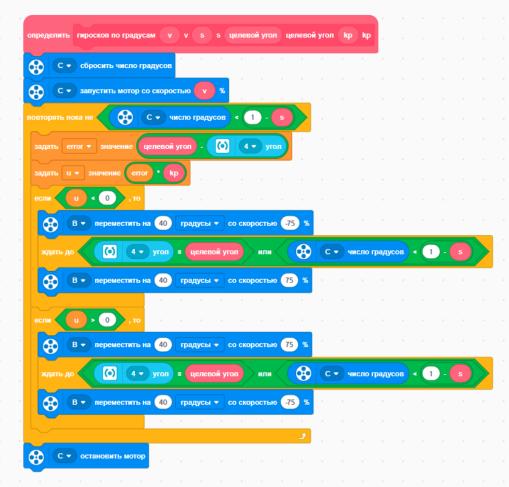
Nº	ЭЛЕМЕНТ	НАЗНАЧЕНИЕ	v 1.0	v 2.0	v 3.0
1	Большие двигатели EV3	Перемещение робота	-	2 шт	2 шт
2	Контроллер EV3	Обеспечение работы робота	-	1 шт	1 шт
4	Датчики цвета EV3	Контроль траектории движения и мест остановки	-	2 шт	2 шт

Функции робота, поливающего деревья:

- Движется по установленной траектории
- Определяет места расположения саженцев
- Управляет механизмом полива

Рисунок 12: Робот для поливки деревьев (вид сбоку)


Рисунок 13: Робот для поливки деревьев (вид спереди)

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ КОМПЛЕКСА

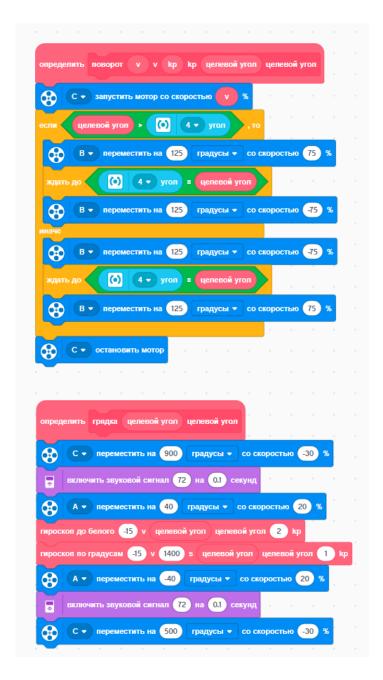


Рисунок 14: Алгоритм EV3 (робот для посадки саженцев)

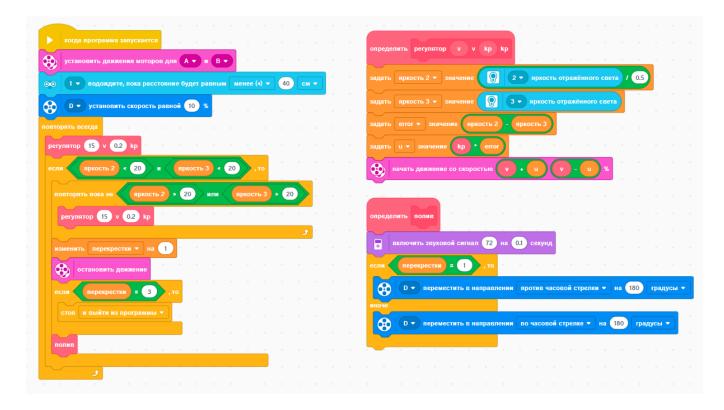


Рисунок 15: Алгоритм EV3 (робот для полива саженцев)

Рисунок 16: Алгоритм WeDo 2.0

модели элементов, созданных с помощью зd-печати

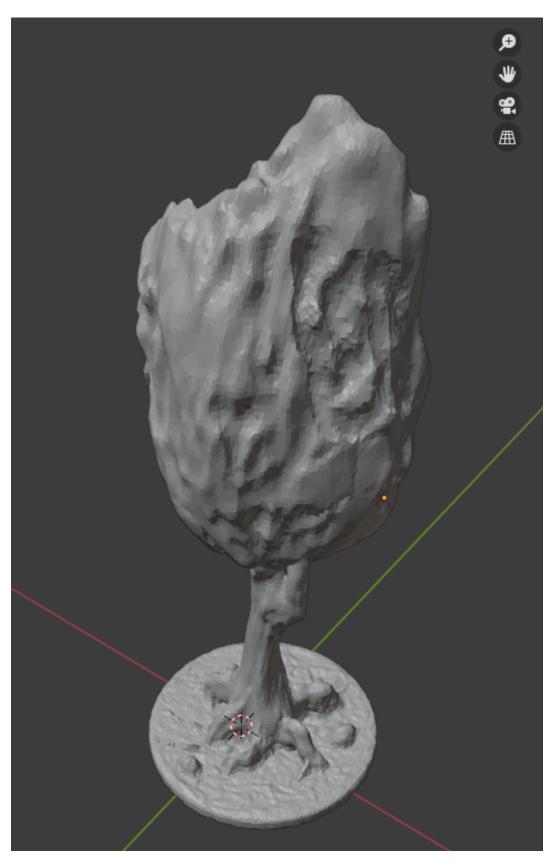


Рисунок 17: Макет дерева для демонстрации (3D-модель)

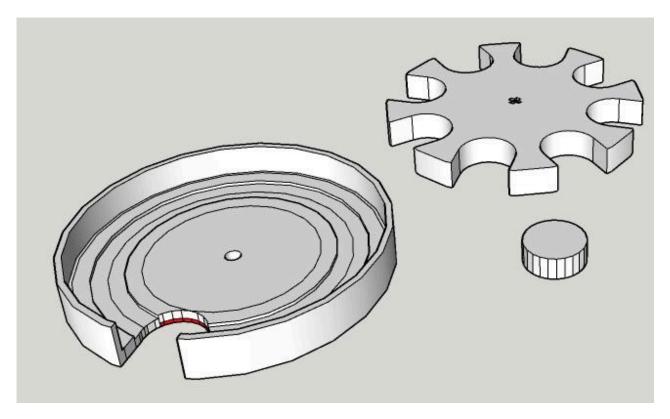


Рисунок 18: Механизм подачи саженцев (3D-модель)